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Г-предел
Общая идея перехода

Продемонстрируем переход к нетривиальному 4d/2d пределу из 5d/3d
случая,считая 5-ое измерение выраженным через S1,с радиусом
h,который собственно мы и устремили к 0.Величины в 5d теории
выражаются тогда через величины 4d теории следующим образом [4]
(2.55):

(. . .)5d/3d = e−h(...)4d/2d

При стремлении q к единице,а h к нулю мы и получаем 4d предел 5d
теории.Параметры,которые будут видоизменяться это q = eh,t = ehβ .
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Г-предел
Конкретное преобразование

Нам часто будет встречаться т.н. q-символы

Похгаммера:(a; q)n =
n−1∏
k=0

(1− aqk).В частности (a; q)∞ =
∞∏
k=0

(1− aqk).

Вводя функцию Γq(x) = (1− q)1−x (q;q)∞
(qx ;q)∞

,можно показать,
что:Γq(x) = Γ(x) в пределе q → 1.

Это приводит к используемому нами в дальнейшем соотношению:

lim
q→1

(qx ;q)∞
(q;q)∞

= (−~)1−x 1
Γ(x) .
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Г-предел
q- и h-интеграл

По определению,интегрирование в q-анализе выполняется следующим
образом:

a∫
0
f (x)dqx = (1− q)a

∞∑
j=0

qj f (qja)

Это определение видоизменяется при переходе к h-анализу ,учитывая
связь q = eh:

b∫
a
f (x)dhx =


h
(
f (a) + f (a + h) + · · ·+ f (b − h)

)
, a < b

0, a = b

-h
(
f (b) + f (b + h) + · · ·+ f (a− h)

)
, a > b
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Г-предел
Преобразования интегралов

Можно показать,что:

1∫
0
dqxf (x) = (1− q)

∞∑
j=0

qj f (qj) = (−h)
∞∑
j=0

ehj f (ehj) =

(−h)
∞∑
j=0

(1 + hj)f (1 + hj) =
∞∫
1
dhx(xf (x)).

1∫
0
dqx

1
x (qx∂x − 1)f (x) = hf (x)|x=1 = f (w)|w=0 = 0
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Преобразования меры q-Сельберга
Преобразования интегралов

Вид среднего по мере q-интеграла Сельберга:

〈f (x)〉 =

∫
dN
q x

N∏
k=1

(
xuk

ν−1∏
a=0

(qaxk−1)

)
∆(q,t)f (x)

∫
dN
q x

N∏
k=1

(
xuk

ν−1∏
a=0

(qaxk−1)

)
∆(q,t)
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Преобразования меры q-Сельберга
Пример преобразований

ν−1∏
k=0

(qkxi − 1) = (−1)ν
ν−1∏
k=0

(1− qkxi ) = (−1)ν(xi ; q)ν =

(−1)ν (xi ;q)∞
(xiqν ;q)∞

= (−1)ν
(xi ;q)∞
(q;q)∞

(xi q
ν ;q)∞

(q;q)∞

= (−1)ν
(qwi ;q)∞

(q;q)∞
(qwi+ν ;q)∞

(q;q)∞

−→

(−1)ν(−~)1−wi 1
Γ(wi )

(−~)wi+ν−1 1
Γ(wi+ν) = (~)ν Γ(wi+ν)

Γ(wi )
.

∆(q,t)(x) =
β−1∏
k=0

∏
i 6=j

(xi−qkxj) =
∏
i 6=j

xβi

β−1∏
k=0

(1−qk xj
xi

) =
∏
i 6=j

xβi (
xj
xi

; q)β =

∏
i 6=j

xβi
(
xj
xi

;q)∞

(qβ
xj
xi

;q)∞
=
∏
i 6=j

xβi
(q

wj−wi ;q)∞

(q
β+wj−wi ;q)∞

=
∏
i 6=j

xβi

(q
wj−wi ;q)∞

(q;q)∞
(q
β+wj−wi ;q)∞

(q;q)∞

−→∏
i 6=j

xβi (−~)1+wi−wj 1
Γ(wj−wi )

(−~)−1−wi+wj+βΓ(β + wj − wi ) =

(−~)β
∏
i 6=j

xβi
Γ(β+wj−wi )

Γ(wj−wi )
= (−~)β

N∏
i=1

x
(N−1)β
i

∏
i 6=j

Γ(β+wj−wi )
Γ(wj−wi )

.
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Преобразования меры q-Сельберга
Две возможности параметра u

Со степенями xui есть 2 варианта:
1 u ∼ 1 при q → 1

Тогда

xi −→ 1+hwi ,
N∏
i=1

xi −→ 1+h

(
N∑
i=1

xi

)
= 1+hp1,

N∏
i=1

xui −→ 1+hup1.

2 u = a
~ при q → 1

(1 + ~wi )
a
~ = (1 + awi

1
~

)
a
~ = eawi .

Соответственно:
N∏
i=1

xui −→
N∏
i=1

eawi .
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Преобразования меры q-Сельберга
Преобразованная мера

〈f (x)〉 =
∞∫
0
dNw

N∏
i=1

xi
N∏
i=1

eawi Γ(wi+ν)
Γ(wi )

N∏
i=1

x
(N−1)β
i

∏
i 6=j

Γ(β+wj−wi )
Γ(wj−wi )

f (w) =

∞∫
0
dNw(1 + h((N − 1)β + 1)p1)

N∏
i=1

eawi Γ(wi+ν)
Γ(wi )

∏
i 6=j

Γ(β+wj−wi )
Γ(wj−wi )

f (w).

〈f (x)〉 =
∞∫
0
dNw

N∏
i=1

xi (1 + hup1) Γ(wi+ν)
Γ(wi )

N∏
i=1

x
(N−1)β
i

∏
i 6=j

Γ(β+wj−wi )
Γ(wj−wi )

f (w) =

∞∫
0
dNw(1 + h(u + 1 + β(N − 1))p1) Γ(wi+ν)

Γ(wi )

∏
i 6=j

Γ(β+wj−wi )
Γ(wj−wi )

f (w).

В дальнейшем будем рассматривать только 1-ый случай,2-ой случай
рассматривается аналогично.
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Петлевые уравнения
Исходное выражение

Исходная формула для q-случая выглядит следующим образом:

∫
dN
q x

N∑
i=1

1
xi

(qxi∂xi −1)xi

[
xi−q
z−xi

∏
i 6=j

xi−txj
xi−xj

N∏
k=1

(
xuk

v−1∏
a=0

(qaxk−1)

)
∆(q,t)(x)f (x)

]
= 0.
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Петлевые уравнения
Пример действия e∂w

Действие оператора на множители,входящие в формулу:

e∂wm ∆(Γ)(w) =
∏
m 6=j

(β+wm−wj )(wj−wm−1)
(wm−wj )(β+wj−wm−1) ∆(Γ)(w)

,

e∂wm
∏
m 6=n

wm−wn−β
wm−wn

=
∏
m 6=n

wm−wn−β+1
wm−wn+1

,

e∂wm
N∏

k=1

Γ(wk+ν)
Γ(wk ) =

N∏
k=1,k 6=m

Γ(wk+ν)
Γ(wk )

Γ(wm+ν+1)
Γ(wm+1) = wm+ν

wm

N∏
k=1

Γ(wk+ν)
Γ(wk ) ,
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Петлевые уравнения
Преобразованное выражение

Таким образом,опуская меру интегрирования,получаем
вид,аналогичный q-случаю :〈

N∑
m=1

[
ea (1 + h(1 + β(N − 1))) wm+ν

y−wm−1 f (wj 6=m,wm + 1)
∏
m 6=n

β+wm−wn

wm−wn
−

−wm−1
y−wm

f (w)
∏
m 6=n

wm−wn−β
wm−wn

]〉
= 0.
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Петлевые уравнения
Контурный интеграл

〈∮
Cx

dξ

[
ea (1 + h(1 + β(N − 1))) ξ+ν

y−ξ−1e
∂wm f (pn)

N∏
j=1

ξ−wj+β
ξ−wj

+

+ ξ−1
y−ξ f (pn)

N∏
j=1

ξ−wj−β
ξ−wj

= 0.
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Петлевые уравнения
Итоговая система

получаем итоговый вид петлевых уравнений:

ξ = y − 1 : ea(y + ν − 1)〈f (pn +
n−1∑
l=0

y l(−1)n−l+1C l
n)exp[−

∑
n>0

1
nyn (

n−1∑
l=0

plC
l
n((1− β)n−l − 1))]〉+

ξ = y : +(y − 1)〈f (pn)exp[−
∑
n>0

n−1∑
l=0

1
nynC l

nplβ
n−l ]〉 = 0.
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Петлевые уравнения
Решение системы

Продемонстрируем:
f (pn) = 1.

Разлагая экспоненту,получаем:

ea(y +ν−1)(1+ 1
y (Nβ)+ 1

2y2 (2β〈p1〉−N(β2−2β)+N2β2)+ 1
3y3 (3〈p2〉β−

N(β − 2)(β + (β − 1)2)− 3〈p1〉β(β − 2) + 1
2N

3β3 + 3
2Nβ(2β〈p1〉 −

Nβ(β − 2)))) + (y − 1)(1− 1
y (Nβ) + 1

2y2 (N2β2 − Nβ2 − 2β〈p1〉) +
1

3y3 (−(Nβ3 + 3〈p1〉β2 + 3〈p2〉β)− 1
2(N3β3) + 3

2Nβ(Nβ2 + 2β〈p1〉)))) = 0.
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Петлевые уравнения
Ответы

Получаем следующие ответы:

〈p1〉 = −N(Nβ−β−βea+2νea+Nβea+2)
(2(ea−1))

〈p2〉 = N
6(ea−1)2

(6ea − 6β + 6Nβ + b2e2a + 6ν2e2a − 3Nβ2 − 18βea +

18νea + β2 + 2N2β2 + 10β2ea − 18Nβ2ea − 6βνe2a − 3Nβ2e2a +
8N2β2ea + 18Nβea + 2N2β2e2a − 12βνea + 12Nβνea + 6Nβνe2a + 6)

〈p2
1〉 = N

4(ea−1)2
(4N + 4ea− 4Nβ +Nβ2 + 4N2β− 4βea + 4νea− 2N2β2 +

N3β2 + 2Nβ2ea + 4N2βea + Nβ2e2a − 4N2β2ea + 2N3β2ea + 4Nν2e2a +
8Nνea−2N2β2e2a+N3β2e2a+4N2βνe2a−4Nβνea−4Nβνe2a+4N2β2νea)
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Петлевые уравнения
Несколько любопытных моментов

1 В случае,когда u ∼ 1,который можно назвать u-случаем,величины
для полиномиальных средних будут иметь вид,пропорциональный
1
h ,что является необычным и не совсем пока понятным
результатом.Вычисления с помощью взятия ряда также дают
расходящийся ответ.

2 Интересно то,что для взятия среднего по определению для
получения правильного ответа нужно сначала посчитать ряд,а
лишь потом устремить h к нулю.Если же сначала устремить h к
нулю,а затем взять уже интеграл,то ответ будет другим.

3 Может возникнуть определённое сомнение в том,что петлевые
уравнения вообще необходимы,так как любое среднее можно
посчитать по определению,однако даже подсчёт полиномов 2-ого
порядка путём подсчёта ряда(то есть по определению) с помощью
компьютерного символьного вычисления не дало результатов,так
как заняло очень много времени,при этом не закончив подсчёт.
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Предел полиномов Макдональда
Идея проверки

Рассмотрим полиномы Макдональда.Их средние выражаются через
параметры q = eh, t = ehβ, u = a

h , а параметры ν,N остаются
неизменными.Попробуем разложить средние от полиномов по h,а
затем сравнить полученные выражения с полученными путём
перевыражения симметрических полиномов в переменных x через
переменные в переменных w ,а также не забыть о поправках к мере
h-усреднения,которые.как мы увидим,также играет роль. В

переменных w : p1(x) =
N∑
i=1

xi =
N∑
i=1

(ehwi ) =(до 1-ого порядка по

h)=
N∑
i=1

(1 + hwi ) = N + hp1(w). Среднее для M[1],[]:

〈M[1],[]〉 = 〈p1(x)〉 = q(tN−1)(tN−1qu+1−1)
(t−1)(t2N−2qu+ν+2−1)

.
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Предел полиномов Макдональда
Проверка 2-ого уровня

Попробуем сделать то же для 2-ого уровня.Возьмём наиболее простой
из полиномов Макдональда –M[1,1][] = 1

2(p2
1 − p2).Аналогичным

образом разложим p2(x), p2
1(x) по w :

p2(x) =
N∑
i=1

x2
i =

N∑
i=1

e2hwi =
N∑
i=1

(1 + 2hwi + 1
2(2hwi )

2) =

N + 2hp1(w) + 2h2p2(w),

p2
1(x) =

(
N∑
i=1

xi

)2

=

(
N∑
i=1

1 + hwi + (hwi )
2

2

)2

=(
N + hp1(w) + h2p2(w)

2

)2
= N2 + 2Nhp1(w) + h2(p2

1 + Np2).

〈M[1,1][]〉 = q2t(tN−1)(eaqtN−1−1)(tN−1−1)(eaqtN−2−1)
(t2−1)(eaqv+2t2N−2−1)(t−1)(eaqv+2t2N−3−1)
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Предел полиномов Макдональда
Поправки к мере

Попытаемся решить эту проблему,учитывая поправки к мере,по
которой берётся усреднение.Разделим вклады в мере следующим
образом:

〈p2(x)〉 =
〈(N+2hp1(w)+2h2p2(w))(1+hA+ 1

2h
2B)〉

〈(1+hA+ 1
2h

2B)〉

Аналогично для p2
1(w). Раскладывая по h до 2-ого порядка

находим,что:

〈p2(x)〉 = (N + h(2〈p1(w)〉+ N〈A〉) + h2(2〈p2(w)〉+ N〈B〉
2 +

2〈p1(w)A〉))(1− h〈A〉+ h2(〈A〉2 − 〈B〉2 )) =
N + 2hp1(w) + h2(2〈p2(w)〉+ 2〈p1(w)A〉 − 2〈A〉〈p1(w)〉).
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Предел полиномов Макдональда
Пример поправок

N∏
i=1

ν−1∏
k=0

(qkxi − 1) =
N∏
i=1

ν−1∏
k=0

(1 + h(k + wi ) + h2

2 (k + wi )
2 − 1) =

N∏
i=1

ν−1∏
k=0

h(k +wi )(1+ h
2 (k +wi )) =

N∏
i=1

hν
ν−1∏
k=0

(k +wi )
ν−1∏
k=0

(1+ h
2 (k +wi )) =

N∏
i=1

hν
ν−1∏
k=0

(k + wi )
N∏
i=1

ν−1∏
k=0

(1 + h
2 (k + wi )) = I

N∏
i=1

ν−1∏
k=0

(1 + h
2 (k + wi )) =

I
N∏
i=1

ν−1∏
k=0

(1 + h
2wi + h

2k) = I
N∏
i=1

(1 + h
2νwi + h

2
ν(ν−1)

2 ) =

I (1 + h
2νp1(w) + h

2N
ν(ν−1)

2 ),где I–мера без поправок.
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Предел полиномов Макдональда
2-ой порядок 2-ой подход

Собирая всё вместе,получаем итоговое разложение M[1,1][] через
полиномы от w :

〈M[1,1][]〉 = 1
2(〈p2

1(x)〉 − 〈p2(x)〉) =
1
2(N(N − 1) + 2h〈p1(w)〉(N − 1) + h2(〈p2

1(w)〉+ (N − 2)〈p2(w)〉+ (N −
1)(2(β(N − 1) + 1) + ν)(〈p2

1(w)〉 − (〈p1(w)〉)2))).

Подставляя выражения для 〈p1(w)〉, 〈p2(w)〉, 〈p2
1(w)〉 из уравнений

получаем соответствие в 0-ом,1-ом и 2-ом порядках.
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Собственные функции модели rRS
1-ый подход

Гамильтониан имеет вид:H rR =
N∑
i=1

∏
k 6=i

wi−wk+β
wi−wk

e∂wi

Выделим в гамильтониане операторы Ôi =
∏
k 6=i

wi−wk+β
wi−wk

e∂wi .Введём

функции Γi =
∏
k 6=i

Γ(wi−wk )
wi−wk+β . Попробуем сумму или произведение

величин Γi в качестве собственной функции.
N∑
i=1

Ôi

N∑
j=1

Γj =
N∑
j=1

Γj +
N∑
j=1

Γj

(∑
i 6=j

(∏
k 6=i

wi−wk+β
wi−wk

)
wj−wi+β−1
wj−wi−1

)
N∑
i=1

Ôi

N∏
j=1

Γj =

(
N∑
i=1

N∏
j=1

Γj

)
N∑
i=1

N∏
j 6=i

(wj−wi+β−1)
(wj−wi−1) .
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Собственные функции модели rRS
Небольшая лемма и тривиальный класс

Лемма:
N∑
i=1

∏
k 6=i

wi−wk+α
wi−wk

= N.

Таким образом,если для любого оператора e∂wi функция будет
собственной,то она будет собственной и для всего H rR .Так как для
любой i действие оператора должно быть одинаково,то функция
симметрична.Из условия f (wi + 1) = f (wi ) следует
периодичность.Общий класс функций,как уже было
сказано,являющихся собственными для H rR это класс
функций,являющихся собственными для любого из операторов e∂wi с
одинаковыми собственными значениями,явно выражаемым
подклассом этого класса являются все симметрические периодические
функции.
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Собственные функции модели rRS
Собственная функция для N = 2

выражение для "нетривиальной"собственной функции в случае 2-ух
переменных:
ψ(w1,w2|z1, z2) =

zw1+w2
2

(
z1
z2

)w1 Γ(w1−w2)
Γ(w1−w2+β)2F1( ε+

ε1
, ε++w1−w2

ε1
; ε1+w1−w2

ε1
| z2z1 ). Упрощая

z1 = z2, ε+ = β − 1, ε1 = −1 можем записать:

2F1(1− β,w2 − w1 + 1− β;w2 − w1 + 1|1) = Γ(w2−w1+1)
Γ(w2−w1+β)∗(константа).

Тогда рассмотрим функцию:

K2 = Γ(w1−w2)Γ(w2−w1+1)
Γ(w1−w2+β)Γ(w2−w1+β) .
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Собственные функции модели rRS
Собственная функция для произвольного N

Обобщим эту функцию на случай произвольного числа N переменных.

KN =
∏
i<j

Γ(wi−wj )Γ(wj−wi+1)
Γ(wi−wj+β)Γ(wj−wi+β)

H rRKN = NKN .
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